A NEW APPROACH TO THE SYNTHESIS OF A LYTHRACEAE ALKALOID, LASUBINE II

Koichi NARASAKA, Shigeru YAMAZAKI, and Yutaka UKAJI
Department of Chemistry, Faculty of Science,
The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113

A lythraceae alkaloid, (\pm)-lasubine II, is synthesized via an acyclic syn-1,3-amino alcohol which is derived stereoselectively from a β -hydroxy ketone.

Generally, lythraceae alkaloids have been synthesized by the condensation of isopelletierine with aromatic aldehydes 1) or a [2+3] cycloaddition of tetrahydropyridine N-oxide. 2) Recently, we reported an efficient method for the preparation of syn-1,3-amino alcohols by the stereoselective reduction of acyclic β -hydroxy ketone O-benzyloximes. 3) By applying this method, a new route to the synthesis of a lythraceae alkaloid, lasubine II $(\underline{10})$, 4) has been accomplished. In this strategy, the key intermediate, an acyclic syn-1,3-amino alcohol $\underline{5}$, was prepared stereoselectively from a β -hydroxy ketone $\underline{3}$, and successive cyclization processes afforded (\pm) -lasubine II in a stereoselective manner.

Firstly, the β -hydroxy ketone $\underline{3}$ was prepared from veratraldehyde. 2-(3,4-Dimethoxyphenyl)-1,3-dithiane ($\underline{1}$) derived from veratraldehyde⁵) was alkylated with 2-bromo-1,1-dimethoxyethane and the product was hydrolyzed to an aldehyde $\underline{2}$. Then the aldol reaction of the aldehyde $\underline{2}$ with the kinetic enolate of 5-hexen-2-one afforded the β -hydroxy ketone $\underline{3}$ in 80% yield, in which the whole carbon skeleton for lasubine II ($\underline{10}$) was arranged. The aldol product $\underline{3}$ was converted to the corresponding O-benzyloxime $\underline{4}$ as an almost 1:1 mixture of syn and anti-O-benzyloximes. Stereoselective reduction of $\underline{4}$ was achieved by the treatment with lithium aluminum hydride (LAH) in the presence of potassium methoxide in THF (-78 \rightarrow -15°C) to yield the syn-1,3-amino alcohol $\underline{5}$ in 65% yield.⁶)

The ring construction to a quinolizidine skeleton was performed by the following procedures. After the protection of the amino group of $\underline{5}$ by t-butoxy-carbonyl group, the thioacetal group was hydrolyzed to generate a hydroxy ketone $\underline{6}$. Deprotection of the amino group with trifluoroacetic acid in dichloromethane spontaneously yielded a labile cyclic imine $\underline{7}$, which was immediately reduced with LAH in the presence of sodium methoxide to furnish the 2,6-cis-piperidine $\underline{8}$ stereoselectively. Hydroboration utilizing disiamylborane and the successive oxidation afforded a diol $\underline{9}$, and the treatment with p-toluenesulfonyl chloride in pyridine gave (\pm) -lasubine II (10).8

Thus the stereoselective synthesis of lasubine II has been achieved via an acyclic intermediate, demonstrating a new and useful strategy for the preparation of lythraceae alkaloids.

Ar = 3,4-dimethoxyphenyl

The authors are indebted to Professor Kaoru Fuji for his kind gift of $^{\rm l}{\rm H}$ NMR (400 MHz) and IR spectra of the natural lasubine I and II, and are grateful to Professor Teruaki Mukaiyama for valuable discussion during this work.

References

- 1) W. M. Golebiewski and J. T. Wrobel, "The Alkaloids," ed by R. G. A. Rodrigo, Academic Press, Inc. New York (1981), Vol. 18, Chap. 4.
- 2) H. Iida, M. Tanaka, and C. Kibayashi, J. Org. Chem., $\underline{49}$, 1909 (1984) and the references cited therein.
- 3) K. Narasaka, S. Yamazaki, and Y. Ukaji, Chem. Lett., 1984, 2065.
- 4) For the isolation of lasubine II, see: K. Fuji, T. Yamada, E. Fujita, and H. Murata, Chem. Pharm. Bull., <u>26</u>, 2515 (1978).
- 5) H. Raumz, Arzneim.-Forsch., 28, 2048 (1978).
- 6) The anti-1, 3-amino alcohol was not detectable by 13 C NMR spectrum.
- 7) Y. Matsumura, K. Maruoka, and H. Yamamoto, Tetrahedron Lett., 23, 1929 (1982).
- 8) 1 H NMR (400 MHz) and IR spectra of the synthetic (±)-lasubine II (10) was identical with those of the natural lasubine II. And Mass spectrum completely agreed with those values reported by C. Kibayashi. 2)

(Received June 3, 1985)